TR-2003004: Superfast Algorithms for Singular Toeplitz/Hankel-like Matrices
نویسنده
چکیده
Applying the superfast divide-and-conquer MBA algorithm for generally singular n × n Toeplitz-like or Hankel-like integer input matrices, we perform computations in the ring of integers modulo a power of a fixed prime, especially power of 2. This is practically faster than computing modulo a random prime but requires additional care to avoid degeneration, particularly at the stages of compression of auxiliary matrices. We supply the necessary techniques. The resulting algorithm combined with Hensel’s lifting and fast rational number reconstruction supports nearly optimal bit cost estimates for the solution of (possibly singular but) consistent Toeplitz/Hankel-like linear systems with integer coefficients (as well as for other fundamental problems of matrix computation). We arrive at nearly optimal bit cost estimates also for computing the univariate polynomial gcd and resultant, Padé approximation, rational interpolation, and Berlekamp–Massey’s problem.
منابع مشابه
TR-2004015: Superfast Algorithms for Singular Toeplitz-like Matrices
We apply the superfast divide-and-conquer MBA algorithm to possibly singular n × n Toeplitz-like integer input matrices and extend it to computations in the ring of integers modulo a power of a random prime. We choose the power which barely fits the size of a computer word; this saves word operations in the subsequent lifting steps. We extend our early techniques for avoiding degeneration while...
متن کاملTR-2002002: Can We Optimize Toeplitz/Hankel Computations? II. Singular Toeplitz/Hankel-like Case
In Part I, under the bit operation cost model we achieved nearly optimal randomized solution of nonsingular Toeplitz/Hankel linear system of equations based on Hensel's lifting. In Part II, we extend these results to the singular Toeplitz/Hankel-like case based on the MBA divide-and conquer algorithm and its combination with Hensel's lifting. We specify randomization and estimate the error/fail...
متن کاملIterative Methods for Toeplitz-like Matrices
In this paper we will give a survey on iterative methods for solving linear equations with Toeplitz matrices. We introduce a new class of Toeplitz matrices for which clustering of eigenvalues and singular values can be proved. We consider optimal (ω)circulant preconditioners as a generalization of the circulant preconditioner. For positive definite Toeplitz matrices, especially in the real case...
متن کاملSuperfast Algorithms for Singular Toeplitz-like Matrices
We apply the superfast divide-and-conquer MBA algorithm to possibly singular n × n Toeplitz-like integer input matrices and extend it to computations in the ring of integers modulo a power of a random prime. We choose the power which barely fits the size of a computer word; this saves word operations in the subsequent lifting steps. We extend our early techniques for avoiding degeneration while...
متن کاملSplit Algorithms and ZW-Factorization for Toeplitz and Toeplitz-plus-Hankel Matrices
New algorithms for Toeplitz and Toeplitz-plus-Hankel are presented that are in the spirit of the “split” algorithms of Delsarte/Genin. It is shown that the split algorithms are related to ZW-factorizations like the classical algorithms are related to LU-factorizations. Special attention is paid to skewsymmetric Toeplitz, centrosymmetric Toeplitz-plus-Hankel and general Toeplitz-plus-Hankel matr...
متن کامل